Introduction: PID Controller Design In this tutorial we will introduce a simple yet versatile feedback compensator structure, the Proportional-Integral-Derivative (PID) controller. We will discuss the effect of each of the pid parameters on the closed-loop dynamics and demonstrate how to use a PID controller to improve the system performance. Key MATLAB commands used in this tutorial are: tf , step , pid , feedback , pidtool , pidtune In this tutorial, we will consider the following unity feedback system: The output of a PID controller, equal to the control input to the plant, in the time-domain is as follows: (1) First, let's take a look at how the PID controller works in a closed-loop system using the schematic shown above. The variable ( ) represents the tracking error, the difference between the desired input value ( ) and the actual output ( ). This error signal ( ) will be sent to the PID controlle...
Comments
Post a Comment